Economics of Sport (ECNM 10068)

Lecture 1: Introduction; The Theory of Contests

Carl Singleton¹

The University of Edinburgh

16th January 2018

¹Carl.Singleton@ed.ac.uk

Introduction

Can studying the wide context of competitive sports provide new insights into economic behaviour?

Can economic theory...

- ... help to predict the outcomes of sporting competition?
- ... be used to design (in some sense) optimal sets of rules and structures/leagues/tournaments?
- ... make sense of why the market for sport and its supply-chain are quite different from any other market?

Main reading:

Chapter 1, Dobson-Goddard "The Economics of Football" 2nd ed. Cambridge 2011; S. Szymanski. (2003) "The Assessment: The Economics of Sport", *Oxford Review of Economic Policy*, (19)4: 467-477, doi:10.1093/oxrep/19.4.467.

Lecture 1 - The Theory of Contests

Issues covered:

- What does an economic model of sporting competition look like?
- When each player can observe the actions of the other players, what is an equilibrium?

Main reading:

S. Szymanski. (2003). "The Assessment: The Economics of Sport", *Oxford Review of Economic Policy*, (19)4: 467-477, doi:10.1093/oxrep/19.4.467;
Dietl, H., Franck, E., Grossmann, M. and Lang, M. (2012). "Contest Theory and its Applications in Sports", The Oxford Handbook of Sports Economics Volume 2, edited by S. Shmanske and L. Kahane. New York, USA: Oxford University Press. doi:10.1093/oxfordhb/...

Contest Theory in Economics more generally

- Rewards or outcomes based on individual's relative performance or outputs rather than absolute amounts.
- Seminal work studied the optimal design of rent-seeking contests for public funds; but extended to other contexts such as the labour market (firms competing for workers).
- Generally related to the wide literature on auction theory, and their optimal design.

Contest Theory in the Economics of Sport

- In sporting contests there is usually some uncertainty about who will win: the player who puts the most into the competition can still lose.
- Some sports are very discriminating the best player almost always wins: athletics, swimming, boxing.
- In others, even the best player wins rarely: golf, international team sports (e.g. football World Cup).
- In a standard auction only the winning bidder pays but in sporting contest everybody 'pays' before finding out who wins.
- Sporting contests can therefore be modelled as imperfectly discriminating all-pay auctions.

A simple model of sporting contest

- Let each player (team) be denoted by $i(j) = \{1, 2, ..., N 1, N\}$, such that there are N players in total.
- Each player faces a 'contest success function': gives the probability of success p_i for individual i, depending on the amount of effort (resources) they put in $x_i \ge 0$, relative to the amount of effort put in by others $x_i \ge 0$.
- One example is a logit function:

$$p_i = \frac{x_i^{\gamma}}{\left(\sum_{j \neq i}^{N-1} x_j^{\gamma}\right) + x_i^{\gamma}}, \quad \gamma \ge 0, \quad \sum_i^N p_i = 1.$$
 (1)

- γ measures how discriminatory the effort put in is:
 - $\gamma \rightarrow 0$: $p_i = 1/N$, $\forall i$; effort is irrelevant
 - $\gamma \to \infty$: $p_i = 1$ if $\{x_i > x_j, \ \forall i \neq j\}$, and $p_i = 0$ otherwise; everybody pays, but the highest 'bidder' wins, making this an 'all pay auction'.

- Define a payoff (revenue) function from the contest as:

$$\pi(x_i, x_{-i}) = p_i(x_i, x_{-i})V_i - c_i(x_i) + R_i \ge 0$$
 (2)

- $\pi(x_i, x_{-i})$: net payoff (profit) given own and others' efforts
- $p(x_i, x_{-i})$: prob. of success given own and others' efforts
- V_i : Prize from winning contest
- $c_i(x_i)$: Cost of effort
- $c_i'(x_i) > 0$, $c_i''(x_i) \ge 0$: Cost is increasing in effort, and perhaps increasingly so
- R_i : Fixed value (could be negative) from taking part.
- Key assumption: own and others' actions are always observed.
- Potential to allow for many different types of asymmetry in the model, for example: $V_i, c_i(x), R_i, \gamma_i$

What is the optimal choice of effort for player *i*, taking as given the possible actions of others?

- Substitute (1) into (2). Find the best response to any possible effort choice of other players by the first order condition (FOC), i.e. maximising w.r.t. x_i :

$$c_i'(x_i) = \gamma V_i x_i^{\gamma - 1} \frac{\sum_{j \neq i}^{N-1} x_j^{\gamma}}{\left(\left(\sum_{j \neq i}^{N-1} x_j^{\gamma}\right) + x_i^{\gamma}\right)^2}$$
(3)

- <u>If it exists</u>, a Nash Equilibrium (NE) in pure strategies $\{x_1^*, ... x_N^*\}$ would be characterised by the intersection of these best response functions.
- Solving this looks like it could get messy ...

The Symmetric Equilibrium

Assume players are symmetric (ex ante homogeneous):

- Can assume (guess) that the equilibrium is given by unique pure strategies $x_i^* = x^*$, $\forall i$. Substitute this into (3) to find:

$$x^* = \frac{\gamma V(N-1)}{c'(x^*)N^2}$$
 (4)

- Optimal eq. effort is increasing in the amount of discrimination and the size of the prize
- Effort is decreasing in the number of players and marginal cost [Note, could simplify here by letting c(x) = cx, so $c'(x^*) = c$, i.e. a constant marginal cost.]
- In this eq., $p_i^* = p^* = 1/N, \forall i$

But... we need to check that this symmetric pure strategy eq. exists. **First:**

- Does it satisfy the participation constraint (individual rationality), $\pi(x^*) \ge 0$?

[Assume for simplicity c(x) = c]

Participation then requires $x^* \leq V/cN + R/c$. Using (4), this is the same as $R \leq \frac{V(N-\gamma(N-1))}{N^2}$. Which simplifies further when we assume R = 0 to $\gamma \leq N/(N-1)$.

- If $\gamma > N/(N-1)$, with symmetric players, it could be that nobody plays, and there is no contest.
- With heterogeneity, some players might not play, but the contest could still go ahead with an eq. in pure strategies for those that do play.

Second:

- With the contest set-up here, when $N \ge 3$, we need to check that $\pi(x_i, x_{-i})$ is concave:

$$\frac{\partial^2 \pi(x_i, x_{-i})}{\partial x_i^2} < 0 \tag{5}$$

- For c(x) = c, the existence of a symmetric pure-strategy eq. requires $\gamma < N/(N-2)$.
- If γ is larger, there could be mixed strategy equilibria.

Can we test the theory?

- If we can observe the elements of (4), then it motivates a regression model to test the theory.
- Taking logs, it gives us something linear we can then estimate using a least squares regression.
- For example, to test the elasticity of effort to the size of the prize (β_1) across a number of contests k, for a set of players i:

$$\log(x_{ik}) = \beta_0 + \beta_1 \log(V_k) + \beta_2 \log((N_k - 1)/N_k^2) + \varepsilon_{ik}$$

An example of a mixed-strategy equilibrium, with symmetric players and $\gamma = \infty$.

Assume c(x) = c and R = 0.

- Let P(x) be the cumulative density function of the mixed strategy played by all, with $x \in [\underline{x}, \overline{x}]$.
- With symmetric players, the probability of individual i being successful is then $P(x)^{(N-1)}$; i.e. the other N-1 players when mixing have lower effort levels.
- For a mixed-strategy eq. of this type to exist with P(x) it must be the case that

$$VP(x)^{(N-1)} - cx = VP(\underline{x})^{(N-1)} - c\underline{x} = 0, \text{ with } \underline{x} = 0.$$
 (6)

- Therefore $P(x) = \left(\frac{cx}{V}\right)^{\frac{1}{N-1}}$. And P(x) = 1 implies $\overline{x} = V/c$, i.e. players break even when sure to win.

Is it realistic that V and R are exogenous?: so far they do not depend on x.

- In reality, the revenues and thus prizes in sport could depend on how competitive the games are.
- One possible measure of *competitive balance* in a contest is given by $CB = \prod_{i}^{N'} p_i^*$, where $N' \leq N$ is the number of players who participate in the equilibrium.
- With N' = 2, $CB = p_1^*(1 p_1^*)$. Which is maximised when $p_1^* = 1/2$. More generally, for N' participating players, CB is maximised when $p_i^* = 1/N'$, $\forall i$.
- More on this in the next lecture, when we discuss the Demand for Sport.

A practice exam-type problem

A wealthy businessman invites two teams called E and S to a Caribbean island to play a one-off, winner-takes-all, game (of cricket) with a large prize V^2

Both teams face the same success function: $p_i = \frac{x_i}{x_i + x_j}$, where x_i is the resources that the teams put in to playing the tournament. Team S has a constant marginal cost equal to 1. Team E has a constant marginal cost equal to $\alpha \ge 1$. Team E also faces a fixed cost of taking part R, but team S faces no fixed costs. In all other ways the two teams are identical.

- (i) Write down the objective problems of the two teams, taking account of how they depend on the actions of the other team.
- (ii) Assuming V is very large [i.e. a contest definitely takes place], what are the equilibrium values of the inputs $\{x_E^*, x_S^*\}$ and the probabilities of success $\{p_E^*, p_S^*\}$ as functions of the parameters V, α, R ?

² This question is partially motivated by the (controversial) 2008 Stamford Super Series cricket tournament between *E*ngland and the *S*tamford Superstars.

- (iii) Using your answer to part (ii), discuss how 'competitive balance' is affected by the magnitude of α .
- (iv) Now suppose $\alpha = 2$ and R = \$100,000. How large does V then need to be such that team E will play the game?

Outline Answer:

[In an exam, you should explain each step and add brief insights on the economic meaning of what is being described by the problem]

(i) For team E:

$$\max_{x_E \ge 0} \frac{x_E}{x_E + x_S} V - \alpha x_E - R \ (\ge 0). \tag{7}$$

For team S:

$$\max_{x_S \ge 0} \frac{x_S}{x_E + x_S} V - x_S \ (\ge 0) \tag{8}$$

(ii) FOC for team E:

$$\frac{Vx_S}{(x_E + x_S)^2} - \alpha = 0 \tag{9}$$

FOC for team E:

$$\frac{Vx_E}{(x_E + x_S)^2} - 1 = 0. ag{10}$$

The pure-strategy Nash eq. is given by the intersection of these best response functions. Combining (9) & (10) gives $x_S^* = \alpha x_E^*$. Substitute this back into (9) to show:

$$\{x_E^*, x_S^*\} = \{\frac{V}{(1+\alpha)^2}, \frac{\alpha V}{(1+\alpha)^2}\},$$

And so,

$$\{p_E^*, p_S^*\} = \{\frac{1}{1+\alpha}, \frac{\alpha}{1+\alpha}\},\$$

(iii) A measure of competitive balance is given by:

$$p_E^* p_S^* = \frac{\alpha}{(1+\alpha)^2}.$$
 (11)

When $\alpha = 1$, $p_E^* p_S^* = 1/4$. But for any $\alpha > 1$, team E is at a competitive disadvantage, and the measure of balance is strictly decreasing in α . Formally,

$$\frac{\partial \left[p_E^* p_S^*\right]}{\partial \alpha} = \frac{1 - \alpha}{(1 + \alpha)^3} < 0 \quad \text{if } \alpha > 1. \tag{12}$$

(iv) The participation constraint for team E is given by:

$$R \le V p_E^* - \alpha x_E^* \tag{13}$$

For $\alpha = 2$ and R = \$100,000, this constraint binds with equality if V = \$900,000.